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Non-invasive early detection of cancer four years
before conventional diagnosis using a blood test
Xingdong Chen1,2,3,12, Jeffrey Gole4,12, Athurva Gore4,12, Qiye He5,12, Ming Lu2,6,12, Jun Min4, Ziyu Yuan2,

Xiaorong Yang2,6, Yanfeng Jiang1,2, Tiejun Zhang7, Chen Suo7, Xiaojie Li5, Lei Cheng5, Zhenhua Zhang5,

Hongyu Niu5, Zhe Li5, Zhen Xie5, Han Shi4, Xiang Zhang8, Min Fan9, Xiaofeng Wang1,2, Yajun Yang1,2,

Justin Dang4, Catie McConnell4, Juan Zhang2, Jiucun Wang1,2,3, Shunzhang Yu2,7, Weimin Ye2,10✉,

Yuan Gao4✉, Kun Zhang 11✉, Rui Liu4,5✉ & Li Jin1,2,3✉

Early detection has the potential to reduce cancer mortality, but an effective screening test

must demonstrate asymptomatic cancer detection years before conventional diagnosis in a

longitudinal study. In the Taizhou Longitudinal Study (TZL), 123,115 healthy subjects provided

plasma samples for long-term storage and were then monitored for cancer occurrence. Here

we report the preliminary results of PanSeer, a noninvasive blood test based on circulating

tumor DNA methylation, on TZL plasma samples from 605 asymptomatic individuals, 191 of

whom were later diagnosed with stomach, esophageal, colorectal, lung or liver cancer within

four years of blood draw. We also assay plasma samples from an additional 223 cancer

patients, plus 200 primary tumor and normal tissues. We show that PanSeer detects five

common types of cancer in 88% (95% CI: 80–93%) of post-diagnosis patients with a

specificity of 96% (95% CI: 93–98%), We also demonstrate that PanSeer detects cancer in

95% (95% CI: 89–98%) of asymptomatic individuals who were later diagnosed, though

future longitudinal studies are required to confirm this result. These results demonstrate that

cancer can be non-invasively detected up to four years before current standard of care.

https://doi.org/10.1038/s41467-020-17316-z OPEN

1 State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University,
200438 Shanghai, China. 2 Taizhou Institute of Health Sciences, Fudan University, 225300 Taizhou, Jiangsu, China. 3 Human Phenome Institute, Fudan
University, 201203 Shanghai, China. 4 Singlera Genomics Inc., La Jolla, CA 92037, USA. 5 Singlera Genomics (Shanghai) Ltd., 201203 Shanghai, China.
6 Clinical Epidemiology Unit, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China. 7 Department of Epidemiology, School of Public Health,
Fudan University, 200032 Shanghai, China. 8 Taizhou Disease Control and Prevention Center, 225300 Taizhou, Jiangsu, China. 9 Taixing Disease Control and
Prevention Center, 225400 Taizhou, Jiangsu, China. 10 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177
Stockholm, Sweden. 11 Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093, USA. 12These authors contributed equally:
Xingdong Chen, Jeffrey Gole, Athurva Gore, Qiye He, Ming Lu. ✉email: weimin.ye@ki.se; gary.gao@singleragenomics.com; kzhang@bioeng.ucsd.edu;
rliu@singleragenomics.com; lijin@fudan.edu.cn

NATURE COMMUNICATIONS |         (2020) 11:3475 | https://doi.org/10.1038/s41467-020-17316-z | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17316-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17316-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17316-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17316-z&domain=pdf
http://orcid.org/0000-0002-7596-5224
http://orcid.org/0000-0002-7596-5224
http://orcid.org/0000-0002-7596-5224
http://orcid.org/0000-0002-7596-5224
http://orcid.org/0000-0002-7596-5224
mailto:weimin.ye@ki.se
mailto:gary.gao@singleragenomics.com
mailto:kzhang@bioeng.ucsd.edu
mailto:rliu@singleragenomics.com
mailto:lijin@fudan.edu.cn
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Late stage cancers often lack an effective treatment option1,2.
Survival rates increase significantly when cancer is identified
at early stages, as the tumor can be surgically removed or

treated with milder drug regimens3; average 5-year survival at
early stage is 91%, while average 5-year survival at late stage is
26%4. Detection of tumors at the earliest possible stage is there-
fore of paramount importance for cancer treatment. Currently, a
limited number of screening tests exist for a few cancer types,
including colonoscopy5, prostate specific antigen6, mammo-
graphy7, and cervical cytology8. However, the efficacy of some
tests has been questioned9, and many patients do not follow
medical guidelines for screening10. Most cancer types currently
lack an effective non-invasive early screening option11. Impor-
tantly, a formal demonstration of early detection requires col-
lecting samples years before conventional cancer diagnosis, which
is only feasible with longitudinal tracking of a large number of
healthy individuals and identifying the very small fraction who
develop cancer over time (at the incidence rate of cancer in the
general population).

Recently, circulating tumor DNA (ctDNA) in blood plasma has
become a promising cancer biomarker12. ctDNA has been
demonstrated to have utility for non-invasive detection of can-
cer13–17, personalized treatment of late stage cancer18, and resi-
dual monitoring of cancer during and after treatment19,20.
However, current detection studies have mostly focused on
detecting cancer in patients who have already been diagnosed21,
though a few studies have shown cancer detection prior to con-
ventional diagnosis in limited cancer types13,14,17. While ctDNA
has the potential for early diagnosis, several limitations make this
task difficult. The quantity of cancer DNA in plasma is limited,
especially at early stages; this could limit sensitivity22. Typical
ctDNA mutation screening methods can be error prone, leading
to reduced specificity; the evolutionary nature of cancer also
translates to an exorbitant amount of possible mutations to be
screened to achieve a consistent biomarker23. While the use of
5-Methylcytosine as a biomarker can address some of these
concerns due to its higher consistency in cancer samples24, the
bisulfite conversion process used to interrogate DNA methylation
damages DNA25. An interrogation method with a high molecular
conversion rate and a consistent set of cancer biomarkers is
essential to ensure a high sensitivity26.

Here, we describe PanSeer, a blood-based cancer screening test,
and demonstrate the early detection of cancer using a unique set
of samples collected as part of the Taizhou Longitudinal Study
(TZL)27. PanSeer interrogates cancer-specific methylation sig-
natures, and demonstrates the early detection of multiple cancer
types up to four years prior to conventional diagnosis in a large-
scale retrospective longitudinal study.

Results
PanSeer assay development. We defined a set of differentially
methylated CpG sites using publicly available microarray and
Whole Genome Bisulfite Sequencing (WGBS) data from The
Cancer Genome Atlas (TCGA)28 and genomic regions known to
be cancer-related in the literature29–35, as well as internal
Reduced Representation Bisulfite Sequencing (RRBS) data from a
variety of cancer tissues. From these sources, we compiled a
targeted panel of 595 genomic regions (Supplementary Data 1)
for further interrogation in plasma samples.

We sought to interrogate these targets in a single assay with
high accuracy and efficiency. Tumor DNA tends to be rare in
plasma, especially in patients with early stage cancer; because
conventional methods for sequencing library construction
incorporating bisulfite conversion and double-stranded ligation
typically have a high DNA loss rate36, detection sensitivity can be

limited. We therefore chose a Singlera library construction
method utilizing semi-targeted PCR. Semi-targeted PCR requires
only a single ligation event37–39 and a single PCR primer per
amplicon40, allowing single-molecule counting at a higher
molecular recovery rate than conventional methods; this gives
the PanSeer assay the potential to achieve high sensitivity even in
early-stage cancers.

Previous methylation-based detection methods have typically
either targeted a small number of regions at high depth through
PCR41, or a large number of regions at low depth through whole
genome bisulfite sequencing (WGBS) or RRBS42. More recently,
techniques have been described to target a large number of
regions at higher sequencing depth43–45. The PanSeer assay
interrogates 595 regions at high depth; this reduces the effects of
patient variability or target dropout. To demonstrate the
robustness of the PanSeer assay, we performed limit of detection
studies by spiking fragmented cancer cell line DNA (HT-29) into
pooled healthy plasma samples. We demonstrated that the
PanSeer assay can detect spike-ins down to a cancer DNA
fraction of 0.1% (see “Methods” section, Supplementary Fig. 1); as
demonstrated by previous studies, a high cancer detection power
can be achieved with a combinatorial modeling approach19.

PanSeer marker identification and annotation. In order to
further identify a set of informative genomic targets that could
differentiate cancer tissue from healthy tissue, we acquired a set of
200 DNA samples isolated from fresh cancer and healthy tissue
from BioChain, a commercial biospecimens provider. We pro-
cessed these samples using the PanSeer assay and identified a set
of 477 differentially methylated regions (DMRs, see “Methods”
section). In order to ensure that identified signals were originating
from cancer tissue, we limited all downstream analysis of cell-free
DNA samples processed by the PanSeer assay to these 477
cancer-specific DMRs (Supplementary Data 1, see “Methods”
section); these regions were associated with 657 genes and 10,613
CpG sites.

We next sought to annotate the genomic regions present in the
PanSeer assay that could discriminate between healthy tissue and
cancer tissue. As expected, many well-known cancer-related
genes or gene families were utilized by the PanSeer classifier,
including FOX family genes46, HOX family genes47, NKL family
genes48, PAX family genes49, and TBX family genes50. Some
genes have been utilized previously for non-invasive cancer
diagnosis in plasma, such as SEPT9 and SHOX225,51. Analysis of
GO terms52 for the PanSeer genes showed that many genes were
associated with DNA binding or transcription factor activity,
which implies that the methylation state of these genes may
contribute to gene expression changes associated with cancer. In
line with expectations based on the panel design, we did not
observe any major difference in gene representation across
different cancer tissue types, as the targets present in the PanSeer
assay had been previously selected to represent a set of
ubiquitously aberrantly methylated cancer genes.

Study design. As part of the TZL study27, 123,115 healthy sub-
jects aged 25 to 90 years provided blood samples for long-term
storage from 2007 to 2014; these individuals were then indefi-
nitely monitored for cancer occurrence through linkages with
local cancer registries and health insurance databases. By the end
of 2017, a total of 575 initially healthy subjects (who presented as
asymptomatic) were diagnosed with one of five common cancer
types (stomach, esophagus, colorectum, lung or liver) within 4
years of initial blood draw (Fig. 1). These five cancer types were
chosen because they had high incidence rates in the Taizhou
cohort and in combination account for the highest mortality in
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China53. By retrospectively interrogating the initially collected
blood samples, we were able to assess if cancer could be identified
prior to conventional diagnostic methods.

We first selected 221 pre-diagnosis samples out of 575
initially asymptomatic patients who were later diagnosed with
stomach, esophagus, colorectal, lung, or liver cancer within 4
years that met inclusion criteria, and 221 healthy samples out of
110,501 healthy participants not diagnosed with cancer for at
least 5 years, matched on a one-to-one basis by 10-year age
group with similar age distribution (Supplementary Fig. 2), sex,
and collection date based on inclusion criteria (see “Methods”
section, Supplementary Table 1). We then collected 357 post-
diagnosis samples and 357 healthy samples matched on a one-
to-one basis by 10-year age group, sex, and collection date to
the post-diagnosis samples based on inclusion criteria (see
“Methods” section, Supplementary Table 1). Samples with a low
number of uniquely mapping DNA molecules were removed (as
well as their matched healthy or cancer sample), leaving 191
pre-diagnosis samples, 223 post-diagnosis samples, and 414
healthy samples (see “Methods” section). Median patient age
was 62 (ages 35–85) (Supplementary Data 2). Samples were
randomly split into a training set for ensemble model
development and an independent leave-out test set for model
validation at an equal ratio using a random number generator.
The test set samples were set aside until model development
was completed and model parameters were locked down using
only the training set samples.

Development of a logistic regression classifier. The PanSeer
assay interrogates 11,787 CpG sites across 595 regions in the
genome34 using a median of 12 ng of plasma DNA, approxi-
mately 2 million sequencing reads, and a minimum of 200,000
mapped unique DNA molecules. We first computed the average
methylation fraction (AMF) across each targeted genomic region
for each sample (see “Methods” section). We then developed a
machine learning method to classify samples as being derived
from healthy patients or patients with cancer (see “Methods”
section). We utilized the 207 healthy, 110 post-diagnosis samples,
and 93 pre-diagnosis samples from the training set, and trained
an ensemble logistic regression (LR) classifier using the AMF
values for these samples; we utilized an established method54 for
this process in order to avoid overfitting (Supplementary Note 1).
Training set samples were randomly split into two groups: one for
model fitting and one for model validation. The model fitting set
was utilized to train an LR classifier, and model scores were
computed for the model validation set. This process was repeated
for 1000 different random splits of the training set, and model
scores were averaged across each sample to produce the final
results; results for each individual sample split are shown in
Supplementary Data 4 and Supplementary Fig. 3. The final
classifier is therefore an average of 1000 LR classifiers built on
different splits of the training set. This classifier achieved 88%
sensitivity for post-diagnosis samples and 91% sensitivity for pre-
diagnosis samples at a chosen specificity of 95% in the training set
(Table 1, Supplementary Data 2). After evaluation in the training

Population of Taizhou city
1.8 million

(districts of Hailin, Gaogang, and Taixing)

Aged 25–90 years
1 million

Taizhou Longitudinal Study
123,115 healthy patients selected

for baseline from 2007 to 2014

Dynamic monitoring
Mean follow-up time was 8.1 years

to end of 2017

575 pre-diagnosis patients
Initially asymptomatic participants who

were later diagnosed with stomach (119),
esophageal (124), colorectal (102), lung

(142), or liver (88) cancer within four years

191 pre-diagnosis patients
Selected based on inclusion/exclusion criteria,

confirmed medical records, and experimental quality
control metrics from patients who were diagnosed

within the first four years of follow-up for five
common cancer types: stomach (35), esophageal (45),

colorectal (35), lung (47), and liver (29)

414 healthy participants
Selected based on inclusion/exclusion criteria,

confirmed medical records, and experimental quality
control metrics from study participants and matched
by 10-year age group, 2-year collection date group,

and sex to the selected pre-diagnosis and post-
diagnosis patients

110,501 healthy participants
participants who were not diagnosed with

cancer for at least 5 years after blood
sample collection

Face-to-face interview to complete
questionnaire and collect fasting

blood

Continuous monitoring of
morbidity and mortality through
local cancer registry and health

insurance databases

Chart reviews and tissue retrieval
from hospitals to confirm disease

diagnoses

Taizhou Hospital Biobanks
Cancer patients recruited from

2007 to 2014

Post-diagnosis patients
Participants who had cancer at the time of

blood sample collection

223 post-diagnosis patients
Selected based on inclusion/exclusion criteria,

confirmed medical records,and experimental quality
control metrics from patients diagnosed with five

common cancer types: stomach (69),
esophageal (68), colorectal (7),

lung (56), and liver(23)

Fig. 1 Summary of the Taizhou longitudinal study (TZL). The flowchart shows recruitment, baseline survey, sample collection, and cohort follow-up for
TZL. Qualified pre-diagnosis patients and healthy participants were selected from the TZL cohort and qualified post-diagnosis patients were selected from
local Taizhou hospital biobanks; 328 samples were processed but later excluded due to not meeting inclusion criteria or failing quality control metrics.
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set, model parameters were frozen and unchanged for all down-
stream analysis. We additionally demonstrated that alternative
machine learning methods provided similar accuracy metrics
(Supplementary Note 2), that model performance remained
identical even if post-diagnosis samples were excluded (Supple-
mentary Note 3), that model performance remained high even
with a minimum read depth requirement (Supplementary
Note 5), with stricter marker selection criteria based on cancer
tissue (Supplementary Note 6, see below).

PanSeer accurately detects cancer in post diagnosis samples.
We applied the LR classifier to the 113 post-diagnosis and 207
healthy samples in the leave-out test set. The receiver operating
characteristic (ROC) curve for the test set is shown in Fig. 2a. The
overall sensitivity of the classifier was 88% in the post-diagnosis
cancer patients (Table 1, Fig. 2b, Supplementary Fig. 6) with a
specificity of 96% (Table 1, Fig. 2b, Supplementary Fig. 6). Sen-
sitivity was similar for early-stage and late-stage cancer samples
(Fig. 2c, Supplementary Fig. 4), and ranged from 75% in color-
ectal cancers to 96% in lung cancers (Fig. 2d, Supplementary
Fig. 5). While the false positives likely represent misclassifications
by the PanSeer assay, it is possible some patients might have
undetected cancer that was not yet diagnosed over the duration of
the TZL study; we took a conservative approach and classified
these samples as false positives.

PanSeer detects cancer up to four years before diagnosis. An
important feature of a screening assay is to diagnose cancer
earlier than conventional methods21. We therefore evaluated the
ability of the ensemble LR classifier to detect cancer in the 143
apparently healthy patients that were later diagnosed with cancer
within 4 years. In these pre-diagnosis cancer patients, we
observed an overall sensitivity of 95% in the leave-out test set
(Table 1, Fig. 2b, Supplementary Fig. 6). Sensitivity was similar
for patients that were eventually diagnosed with early-stage and
late-stage cancer (Fig. 2e), and ranged from 91% in esophageal
cancer to 100% in liver cancer (Fig. 2f). Sensitivity appeared to be
similar between patients diagnosed one to four years later,
regardless of cancer stage at conventional diagnosis (Supple-
mentary Fig. 7).

We further performed a covariate analysis using the Kruskal-
Wallis test (with post-hoc testing) on patient age, patient sex,
collection date, collection site, smoking status, non-cancer disease
status, number of unique DNA molecules observed, and total
DNA quantity extracted to ensure that other clinical or collection
factors were not contributing to the PanSeer assay’s ability to

detect cancer before conventional diagnosis (Supplementary
Figs. 8–18). While variability was observed between different
sample subsets, due to the low incidence rate of cancer, it was
difficult to draw specific relationships between covariates and
assay accuracy. After post-hoc testing, the only relationship
observed with an effect on assay accuracy was a reduction in
specificity for healthy samples collected before 2010 (representing
approximately one quarter of the healthy samples in this study),
while sensitivity remained consistent (Supplementary Fig. 10); it
is possible that the longer storage time for these samples may
have caused a reduced specificity due to DNA degradation
(Supplementary Fig. 10). Despite this variability, overall sensitiv-
ity and specificity remained high regardless of clinical covariate
status; the PanSeer assay was able to utilize methylation signals to
detect cancer up to four years before conventional diagnosis
regardless of clinical covariates.

Due to the retrospective nature of the TZL, we could not be
certain whether the pre-diagnosis samples classified as normal
were due to misclassification by the PanSeer assay or if these
patients truly were cancer-free at the time of sample collection
and developed cancer entirely after blood sample collection; we
took a conservative approach and classified these samples as false
negatives.

Methylation differences between tissue and plasma samples.
While the PanSeer assay showed high sensitivity for cancer
detection in both post-diagnosis and pre-diagnosis plasma sam-
ples, we observed that some genomic loci did not show consistent
methylation changes between cancer tissue and cancer plasma
samples. These genomic regions either showed hypermethylation
in cancer tissue and hypomethylation in cancer plasma, or vise
versa. While this is likely due to either intrinsic differences in
tissue and plasma methylation, the variability of cancer methy-
lation patterns, or the inherent variation in sampling methylation
patterns in cell-free DNA, the possibility exists that these dis-
cordant patterns may indicate the presence of an unknown
confounding factor. We therefore conducted an additional ana-
lysis of the PanSeer data in which we further filtered out any
genomic regions not showing concordant hypermethylation/
hypomethylation between cancer tissue and training set cancer
plasma samples (Fig. 3, Supplementary Note 6). We determined
that 277 genomic regions showed concordant methylation
between tissue and plasma; when using only these 277 genomic
regions for modeling, leave-out set sensitivity (85.0% for post-
diagnosis samples, 89.8% for pre-diagnosis samples) and speci-
ficity (95.1% for healthy samples) remained high (Fig. 3,

Table 1 Accuracy of PanSeer.

Training set Test set

Category Total # of
Samples

Specificity
(%, 95% CI)

Sensitivity
(%, 95% CI)

# of
Samples

Specificity
(%, 95% CI)

Sensitivity
(%, 95% CI)

Healthy 414 207 94.7 (90.7–97.3) 207 96.1 (92.5–98.3)
Post-diagnosis 223 110 88.2 (80.6–93.6) 113 87.6 (80.1–93.1)
Pre-diagnosis 191 93 91.4 (83.8–96.2) 98 94.9 (88.5–98.3)
0–1 year before
diagnosis

22 100 (84.6–100) 21 95.2 (76.2–99.9)

1–2 year before
diagnosis

21 90.5 (69.6–98.8) 23 95.7 (78.1–99.9)

2–3 year before
diagnosis

19 94.7 (74.0–99.9) 31 93.6 (78.6–99.2)

3–4 year before
diagnosis

31 83.9 (66.3–94.6) 23 95.7 (78.1–99.9)

Sensitivity and specificity for the training set and test set are presented and divided into subcategories by the number of years prior to cancer diagnosis by conventional testing.
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Supplementary Note 6). While this demonstrates that the PanSeer
assay can detect early-stage cancer even with a more strictly
chosen target set, further large-scale longitudinal studies should
be conducted to confirm early detection of cancer in pre-
diagnosis samples.

Discussion
In summary, we demonstrated that five types of cancer can be
detected through a DNA methylation-based blood test up to four
years before conventional diagnosis. The PanSeer assay utilizes

methylation biomarkers to their fullest extent by sensitively tar-
geting 10,613 CpG sites across 477 genomic regions and utilizing
a machine-learned ensemble score based on hundreds of genomic
regions simultaneously.

The PanSeer assay was able to successfully detect five cancer
types using a common set of methylation markers regardless of
tissue-of-origin. As such, the genes included in the LR classifier
represent a core epigenetic signature common to multiple cancer
types. These genes may merit further investigation in a ther-
apeutic context, as a change in epigenetic regulation of these
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Fig. 2 Performance of PanSeer. All presented results used only the test set samples. Dots represent the logistic regression (LR) score. a Receiver operator
characteristic curves (ROC) and area under the curve (AUC) values for PanSeer. The red star shows the cutoff value derived from the training set. Separate
curves are shown for post-diagnosis samples and pre-diagnosis samples (divided by years before diagnosis). b LR scores for PanSeer samples by years
before diagnosis. c LR scores for PanSeer samples by cancer stage for post-diagnosis samples. d LR scores for PanSeer samples by tissue of origin for post-
diagnosis samples. e LR scores for PanSeer samples by cancer stage at diagnosis for pre-diagnosis samples. f LR scores for PanSeer samples by tissue of
origin for pre-diagnosis samples.
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genes seems to be a common cancer phenomenon. While we have
demonstrated early detection of cancer four years before con-
ventional diagnosis through use of a longitudinal cohort, we
would like to emphasize that the PanSeer assay is likely not
predicting patients that will later develop cancer. Instead, the
assay is most likely identifying patients who already have can-
cerous growths but who remain asymptomatic to current detec-
tion methods and standard of care, as many cancers do not cause
the appearance of symptoms until late in disease development21.

The possibility of a blood-based early cancer screening test has
recently been investigated through multiple approaches30,55,56,
with a recent consensus forming around the high utility of cell-
free DNA methylation as a cancer marker57,58. When developing
a screening test aimed at either a high-risk or average risk
population, cost is a critical factor to ensure test availability and
adoption. While some previous studies have demonstrated that
DNA methylation can be utilized to non-invasively both detect
and determine tissue-of-origin of a cancer45,59, these studies
required the use of a large number of tissue-specific markers and
a high amount of input DNA such that more than one blood vial
would be required, which would incur a higher testing cost. The
PanSeer assay was solely developed to detect cancer regardless of
the tissue-of-origin by targeting a limited number of genomic
regions that are commonly aberrantly methylated across different
cancer types, allowing it to be used as a potential first-line inex-
pensive cancer screen; it also requires a comparatively small
amount of input DNA (from only a single tube of blood). We
therefore envision a clinical context where PanSeer could be used
as a first-line screen; any patient testing positive on PanSeer
would then undergo a more expensive reflex blood test and/or
follow-up imaging to allow tissue of origin mapping. Pathological
examination could then confirm the presence of cancer.

Several limitations of our study should be acknowledged. First,
while this study was longitudinal, analysis was retrospective and
included a matched proportion of cancer and healthy samples in
order to allow development of an accurate cancer detection
model; whether the PanSeer assay would improve patient out-
comes still remains to be established and would require a long-
itudinal prospective study. Second, due to the TZL timeframe27,
modern plasma preservation techniques were not used during
sample collection, leading to various degrees of genomic DNA
contamination and in some cases a high sample failure rate;
additionally, only 1 mL of plasma was available for each sample

(Supplementary Data 2). It is likely that with the 10 mL blood
draws typically used in current protocols and better plasma
preservation techniques, more and higher quality DNA molecules
would be available for the assay and detection sensitivity could be
further increased. Third, the spectrum of cancers observed in the
TZL cohort (Fig. 1) did not exactly match the Chinese general
population53; these differences could be due to local factors (such
as lifestyle, pollution,or genetic composition). Fourth, the total
number of pre-diagnosis cancer samples in this study is limited;
this limitation is unavoidable, as the incidence rate of cancer in a
healthy population is low. Fifth, as mentioned above, the PanSeer
assay was solely developed to detect cancer regardless of the tis-
sue-of-origin; a greatly expanded panel incorporating a large
number of tissue-specific markers would need to be utilized in
order to allow tissue of origin mapping. Sixth, due to the long-
itudinal nature of the TZL and the consent given by patients, we
were unable to obtain tissue samples from the pre-diagnosis
patients after they were later diagnosed; therefore, in order to
ensure that identified signals were derived from cancer tissue, we
utilized 200 primary tumor and normal tissue samples from a
commercial biospecimens provider to choose our markers.
Seventh, due to the longitudinal nature and design of the TZL, we
were unable to obtain the full cancer stage information for all pre-
diagnosis patients, as the TZL database internally only tracked if a
patient was diagnosed at early (I/II) or late (III/IV) stage. We
attempted to obtain stage information for as many patients as
possible, and have described why stage information was una-
vailable for each patient missing this data in Supplementary
Data 2; the most common reason for missing stage information
was that the patient died from cancer shortly after diagnosis
without surgery. Finally, as discussed above, some genomic
regions did not show consistent methylation patterns between
cancer tissue and cancer plasma; while this may be due to
intrinsic differences between the sample types, it is possible that
some unknown confounding factor may be present. We con-
ducted further analysis to remove as much uncertainty as possible
(Supplementary Note 6), but additional validation of pre-
diagnosis cancer detection in a large longitudinal study is
necessary to fully confirm these results.

The PanSeer assay provides a preliminary demonstration of
early detection of multiple cancer types four years prior to con-
ventional diagnosis in a robust manner, and lays the foundation
for a non-invasive blood test for early detection of cancer in a
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high-risk (or average-risk in the future) population. While much
of current cancer research is focused on developing new ther-
apeutics, studies have shown that early detection has the potential
to reduce both treatment cost and mortality rates from cancer by
a significant amount21. The five cancer types studied here account
for 261,530 yearly cancer deaths in the US4 and 2.1 million yearly
cancer deaths in China53; early detection could greatly reduce
deaths from these diseases. Recent studies have also identified
that early detection of cancer could reduce cancer treatment costs
by $26 billion annually (and also reduce the loss of productivity
caused by cancer)60. In the future, to fully establish the clinical
utility of PanSeer and fully validate the results of pre-diagnostic
detection of cancer, we hope to proceed with a large prospective
study of healthy individuals to determine if non-invasive cancer
screening can reduce cancer deaths in a cost-effective manner.

Methods
Study design. The Taizhou Longitudinal Study (TZL) started in July 2007, with a
goal to recruit 200,000 people in the city of Taizhou, Jiangsu province, China, and
follow the participants for at least 40 years27. Taizhou sits at the center of China,
downstream of the Yangtze River. While the regional population and economy are
average for China, the incidence of digestive cancers in Taizhou is high, at the levels
of 36.9, 29.8, and 30.0 per 100,000 person-years for esophageal, gastric, and liver
cancer, respectively61. According to the surveillance of cancer deaths in 2010, the
cancer mortality was 154.05/100,000 person-years, nearly twice the mean incidence
rate for China62.

The baseline survey of the Taizhou Longitudinal Study took place during
2007–2016 in the Taixing, Gaogang, and Hailing areas in Taizhou. All men and
women aged 30–75 who were living in these districts were eligible. Potentially
eligible citizens were delivered an invitation letter by local community leaders and
health workers, with support from the government for extensive publicity
campaigns and health promotions. A Regional Coordinating Centre (RCC) and
survey teams were set up for the baseline survey, consisting of 40 full-time staff
members with medical qualifications and fieldwork experience in the three studied
districts. All participants were indefinitely monitored for cancer occurrence
through linkages with local cancer registries and health insurance databases.
Exposure data were collected through survey questionnaires and physical
measurements. In addition, blood samples and other biological samples were
collected. A total of 123,115 individuals have been recruited and the average follow-
up time is 8.1 years.

Using samples from the Taizhou Longitudinal Study (TZL), we set out to
develop a classification model that could identify cancer in a non-invasive manner
prior to the appearance of cancer symptoms and conventional cancer diagnosis.
The study was approved by the Human Ethics Committee of Fudan University.
Written informed consent was obtained from all study participants prior to
inclusion in the TZL. For healthy samples, it was required that the individual was
not diagnosed with cancer for the duration of the monitoring period (minimum of
5 years). For pre-diagnosis samples, it was required that a positive diagnosis of
lung, liver, stomach, esophageal, or colorectal cancer was determined within 4 years
of initial blood draw. For post-diagnosis samples, it was required that a positive
diagnosis of lung, liver, stomach, esophageal, or colorectal cancer was determined
prior to initial blood draw, and that patients were treatment naïve. Exclusion
criteria were incomplete clinical information, plasma volume less than 1 mL, or
presence of hemolysis in plasma. For all samples, after processing and sequencing,
it was required that at least 200,000 unique mapped DNA molecules were observed
in the sequencing data, as lower amounts indicate a low-quality sample.

The study statistical plan incorporated group sizes of 144 control individuals
and 144 case patients; this sample size was sufficient63,64 to verify that the PanSeer
assay had an expected sensitivity and specificity of 75% with a power of 1−β= 90%
and a significance level of α= 0.05. Additional case and control patients were
incorporated into the study due to their availability.

A total of 1156 plasma samples were collected from the TZL cohort and local
Taizhou hospital biobanks for inclusion in this study. In the TZL cohort, a total of
575 initially healthy study participants were later diagnosed with colorectal,
esophageal, liver, lung, or stomach cancer within 4 years. Out of these 575 pre-
diagnosis samples, 191 samples were selected that passed the study’s inclusion/
exclusion criteria, had confirmed cancer diagnosis by retrospective chart review of
hospitalization records and biopsy pathology, and passed experimental quality
control metrics. 191 healthy samples passing the study’s inclusion/exclusion criteria
and matched by time of collection, sex, 10-year age group, and unique mapped
DNA molecule count to the pre-diagnosis samples were then randomly selected
from the 110,501 TZL healthy samples not diagnosed with cancer for at least five
years (Supplementary Table 1). 223 post-diagnosis plasma samples passing the
study’s inclusion/exclusion criteria were then collected from local Taizhou hospital
biobanks; 223 healthy samples passing the study’s inclusion/exclusion criteria and
matched by time of collection, sex, 10-year age group, and unique mapped DNA

molecule count to the post-diagnosis samples were then randomly selected from
the 110,501 TZL healthy samples not diagnosed with cancer for at least 5 years.

Samples were randomly split into a leave-in training set and a leave-out test set
for data analysis at a ratio of approximately 50%:50% (using a random number
generator). For the training set, 110 post diagnosis cancer samples, 93 pre-
diagnosis samples, and 207 healthy samples (matched by sex, 10-year age group,
collection date, and unique mapped read count) were selected; these samples were
used for model building, and model parameters were fixed prior to any analysis of
test set samples. For the matched leave-out test set, 113 post-diagnosis, 98 pre-
diagnosis samples, and 207 matched healthy samples were selected. For the leave-
out test set, clinical outcomes were concealed from the classifier until calls
were made.

Tissue sample collection. Extracted DNA from 160 cancer and 40 healthy tissue
samples was purchased from Biochain (D8235086-1, D8235090-1, D8235152-1,
D8235248-1). DNA was fragmented using Covaris shearing to a mean size of 150
bp to mimic the size of cell-free DNA from plasma. DNA was then end-repaired
(New England Biolabs, E6050L).

Plasma sample collection. Blood samples were collected from 123,115 individuals
from 2007 to 2014 and separated into plasma as part of the Taizhou Lontiduinal
Study (TZL)27. Ten milliliter of blood were drawn from each patient into a K2
EDTA vacutainer and stored at 4 °C until the end of the business day. Blood
samples were then centrifuged, and plasma was aliquoted into a barcoded cryovial
for long-term storage at −80 °C or below. 578 healthy plasma samples and 221 pre-
diagnosis plasma samples were obtained from the TZL biobank based on inclusion
and exclusion criteria. Patient age at the time of blood sample collection, patient
sex, cancer diagnosis date, and cancer tissue of origin was cataloged for each
sample (Supplementary Data 2). 357 post-diagnosis plasma samples collected and
stored with the same protocol and timeframe as the TZL samples were also
obtained from local Taizhou hospital biobanks based on inclusion and exclusion
criteria, and were processed in the same manner.

Cell free DNA (cfDNA) was extracted from 1mL plasma using the QIAamp
Circulating Nucleic Acid kit (Qiagen, 55114) and eluted into 50 μL of buffer
according to the manufacturer’s instructions with the exception of a 1 h incubation
period at 60 °C during the lysis step. Carrier RNA was used to improve recovery
rate (as per the manufacturer’s suggestions). Samples were quantified using the
Qubit fluorometric method (using 2 μL of volume); we would like to note that it is
possible that carrier RNA could affect the observed DNA yield, but would bias all
quantifications equally.

PanSeer assay. The tissue DNA and cfDNA was bisulfited converted using the
Methylcode Bisulfite Conversion Kit (ThermoFisher, MECOV50) according to the
manufacturer’s protocol; 30 μL of the remaining 48 μL were used for each sample,
as this is the maximum volume allowed by the Methylcode kit. Converted DNA
samples were then processed into sequencing libraries at Singlera Genomics and
sequenced on a Illumina NextSeq 500 in paired end 300 bp mode. Briefly, the
bisulfite converted DNA was dephosphorylated and ligated to a universal adapter
with a unique molecular identifier (UMI). Following a second strand synthesis and
purification, the DNA underwent a semi-targeted PCR to target 595 genomic
regions covering 11,787 CpG sites. Following a purification, a second PCR added
sample specific barcodes and full length Illumina sequencing adapters. The libraries
were then quantified using the KAPA Library Quantification Kit for Illumina
(KK4844) and sequenced on an Illumina NextSeq 500 in paired-end 300 bp mode
aiming for approximately 2 million reads per sample.

Initial data analysis was performed as part of the standard Singlera methylation
sequencing processing pipeline. Reads were demultiplexed using the Illumina
bcl2fastq software v2.20.0.422 (https://support.illumina.com/sequencing/
sequencing_software/bcl2fastq-conversion-software.html). For each sample,
paired-end read FASTQ files were merged into single reads using PEAR v0.9.6
(https://sco.h-its.org/exelixis/web/software/pear/doc.html). Reads in the merged
FASTQ file were then adapter-trimmed using trim_galore v0.4.0 (https://www.
bioinformatics.babraham.ac.uk/projects/trim_galore/). The unique molecular
identifier sequence for each read was then added to the read name using UMI_tools
v0.5.5 (https://github.com/CGATOxford/UMI-tools). The trimmed reads were
then aligned to the bisulfite-converted human reference genome (version hg19)
using Bismark v0.17.0 (https://www.bioinformatics.babraham.ac.uk/projects/
bismark/) and Bowtie2 v2.3.1 (http://bowtie-bio.sourceforge.net/bowtie2/index.
shtml). Plasma samples with less than 200,000 uniquely mapped DNA molecules
were excluded from downstream processing due to low quality libraries; if a sample
was removed, its matched normal/cancer sample was also removed to maintain a
balanced sample set. This left a matched set of 191 pre-diagnosis samples, 223 post-
diagnosis samples, and 414 healthy samples, as well as 200 healthy and cancer
tissue samples.

For each remaining sample, aligned reads were assigned to each of the 595
target regions covered by the PanSeer assay based on mapped genomic position.
The average methylation fraction (AMF) was computed for each target region by
summing the number of observed cytosines at all covered CpG sites and dividing
by the total sequencing depth at all covered CpG sites in each region per the
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formula:
PM

i NC;i
PM

i NC;i þ NT;i

� � ð1Þ

where I represents a CpG site in this target region, M is the total number of CpG
sites in this target region, NT,I represents the number of thymines observed at CpG
site I, NC,I represents the number of cytosines observed at CpG site i. A graphical
example of this computation is provided in Supplementary Fig. 19. This process
resulted in a matrix with 595 rows (one for each target region) and 1020 columns
(one for each sample); these AMF values have been provided as Supplementary
Data 5.

Marker selection. In order to ensure that target regions utilized for cell-free DNA
analysis showed aberrant methylation in cancer tissue, we utilized the set of 160
cancer tissue samples and 40 healthy tissue samples (including 8 primary lym-
phocyte samples) obtained from Biochain. For each of the 595 target regions, we
performed a t-test with Benjamini-Hochberg multiple testing correction comparing
the AMF values for cancer tissue samples to the AMF values for healthy tissue
samples for each tissue type. 477 genomic regions showing statistically significantly
different AMF values (with corrected p-value cutoff α ≤ 0.05) in one or more tissue
types were retained for downstream processing; all other positions were removed
from the AMF matrices. These resultant 477 genomic regions corresponded to
10,613 CpG sites that could differentiate the Biochain healthy lymphocyte and
healthy tissue samples from the Biochain cancer tissue samples (Supplementary
Fig. 20). In order to additionally confirm that the chosen sites truly represented a
pan-cancer signature, we verified that PanSeer target regions showed differential
methylation between healthy and cancer tissue for other tissue types in the publicly
available TCGA dataset28 (Supplementary Fig. 21).

Cancer detection algorithm. In order to classify each plasma sample as being
derived from a healthy patient or cancer patient, a logistic regression (LR) classifier
was constructed using the training set samples; in order to avoid overfitting, a
cross-validation approach was utilized54. The detailed procedure used to build the
classifier is described below, and code (with inline pseudocode in the comments) is
provided in Supplementary Note 1:

1. The AMF matrix was first subset to contain only the columns corresponding
to training set samples; leave-out test set samples were not considered until
model parameters were finalized.

2. In order to ensure that genomic regions considered by the model were
covered across all samples, any regions for which any sample did not
contain at least one read were dropped from consideration in the model (i.e.,
any row in the AMF matrix with a missing value was removed from the
matrix). 471 out of 477 genomic regions remained after this filtering step.

3. A target array with length equal to the number of training set samples was
defined. If a training set sample was healthy, its corresponding target array
value was set to 0, while if a training set sample was cancerous, its
corresponding target array value was set to 1.

4. The training set was repeatedly randomly split at a 50%:50% ratio into a
model-building set and a model validation set. This splitting process was
repeated 1000 times, leading to 1000 different model-building and model
validation sets (all subsets of the training set). This cross-validation
procedure allows estimation of model parameters using only half of the
training set and validation of model parameters using the other half of the
training set.

5. For each model-building set, the scikit-learn (http://scikit-learn.org)
package’s LogisticRegression module was used to machine-learn parameters
for an LR classifier using the AMF matrix as training data and the target
array as the target values. The liblinear solver implemented in scikit-learn
(http://www.csie.ntu.edu.tw/~cjlin/liblinear) was utilized for this process,
and a LASSO penalty was utilized in order to build a robust model; the
scikit-learn package’s LogisticRegressionCV function was utilized to choose
the LASSO penalty parameter using only the model-building samples. This
resulted in 1,000 different LR equations (one for each model-building set),
which were used as an ensemble.

6. These equations were stored. Each equation was of the form:

P ¼ 1� 1

1þ e�
Pn

i¼1
MiXið ÞþB½ � ð2Þ

where P is the probability that a given sample is cancerous, n is
the number of genomic regions covered by the PanSeer assay, I is
the current haplotype, Xi is the AMF value of the ith genomic
region, Mi represents a linear coefficient fit by the LR machine
learning module, and B represents an intercept coefficient fit by
the LR machine learning module.

1. These equations were then used to compute LR scores for each
corresponding model validation set; this resulted in a matrix of LR scores,

with each training set sample having multiple scores from all iterations
where it was part of the model validation set.

2. A final LR score was computed for each training set sample by averaging all
scores computed when a sample was part of the model validation set. A
cutoff of 0.583 was chosen based on the final training set scores to achieve a
specificity as close to 95% as possible; samples with scores above this value
were considered cancerous, while samples with scores below this value were
considered healthy. Model accuracy was computed for the training set using
these average scores and cutoffs (Table 1). This ensemble model consisting
of the average result of 1000 equations was then locked down prior to any
analysis of the leave-out test set.

3. For all leave-out test set samples, LR scores were computed using all 1000
equations, and a final score was computed by averaging these individual LR
scores. The final score was compared to the training set cutoff, and model
accuracy was computed for the leave-out test set using these average scores
(Table 1).

By utilizing this ensemble classifier approach, the risk of overfitting is greatly
reduced (as it can be ensured that training set and test set performance is similar).
The full equations for the ensemble Logistic Regression classifier (including
coefficients, intercepts, and cutoffs) is presented in Supplementary Data 3, and
source code has been included in Supplementary Note 1. In addition, this same
procedure was repeated using a Linear Discriminant Analysis classifier instead of
Logistic Regression in order to demonstrate that results are independent of the
chosen machine learning method; source code and results are presented in
Supplementary Note 2. To further demonstrate the robustness of this approach, we
additionally determined that the logistic regression score was unaffected by either
the number of missing values in a sample or its bisulfite conversion rate
(Supplementary Figs. 22, 23). We also repeated logistic regression modeling with
two additional constraints to confirm that observed methylation signals in pre-
diagnosis and post-diagnosis patients were cancer-derived; even with a minimum
read depth requirement (Supplementary Note 5) or using stricter marker selection
criteria based on cancer tissue (Supplementary Note 6), model performance
remained high.

Statistical analysis. Means and standard deviations or medians and range were
utilized to summarize continuous variables, while whole numbers and percentages
were utilized to summarize categorical variables. Accuracy metrics were computed
for each sample set and subset based on sample covariates. Sensitivity is defined as
true positives/(true positives+ false negatives). Specificity is defined as true nega-
tives/(true negatives+ false positives). Binomial confidence intervals for sensitivity
and specificity were calculated using the Clopper-Pearson method. To determine if
any sample covariates impacted assay performance, the Kruskal-Wallis H-test was
utilized to compare model scores for each category (healthy, pre-diagnosis, and
post-diagnosis) across each analyzed covariate (Supplementary Figs. 8–18); if
necessary, the Mann–Whitney U-test was utilized to perform post-hoc testing.

Limit of detection study. In order to measure the analytical limit of detection of
the PanSeer assay, a set of spike-in samples consisting of a mixture of cancer cell
line DNA and healthy plasma was constructed; it was determined whether each
spike-in level could be separated from baseline healthy plasma. To create the spike-
in samples, DNA from the HT-29 cell line was purchased from ATCC and sheared
to approximately 150 bp (Covaris). The DNA was then purified and concentrated
using Ampure beads. Plasma from multiple healthy individuals was pooled toge-
ther to use as a baseline in the limit of detection study. Sheared HT-29 was spiked
into the pooled plasma at molar ratios of 0% (baseline), 0.1, 0.5, 1.0, 5.0, and 10%,
with six technical replicates for each spike-in ratio.

The PanSeer assay was then run on the spike-in samples. In order to evaluate
the limit of detection analytically, due to the variation in methylation levels across
the genome, four baseline samples were chosen as training samples to determine
the level of observable background methylation in healthy plasma across each
genomic region. For each individual genomic region, a cutoff value was determined
using these four baseline training samples; this cutoff was set at three standard
deviations above the mean methylation value observed in the baseline samples. For
the remaining two 0% spike-in samples and all 0.1–10% spike-in samples, the
number of genomic regions for which each sample was above the computed cutoff
value was totaled and plotted in Supplementary Fig. 1; all replicates for all spike-in
samples could be distinguished from the baseline samples, with higher spike-in
molar ratios resulting in more genomic regions above the baseline value. Detailed
code for the limit of detection analysis is provided in Supplementary Note 4.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data from this study, including the methylation matrices, are available in the main text,
supplementary materials, supplementary datasets, or have been deposited in GitHub in
the repository NCOMMS-20-10056-T [https://github.com/ncomms-20-10056-t/
ncomms-20-10056-t]. Full genetic sequencing data was not included in the informed
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consent, hence only the methylation status at each genomic position has been released.
The TCGA dataset is available at at the GDC Data Portal [https://portal.gdc.cancer.gov/].

Code availability
The Python code utilized in this study has been deposited in GitHub in the repository
NCOMMS-20-10056-T [https://github.com/ncomms-20-10056-t/ncomms-20-10056-t].
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